
CMUcam4 Guide
Overview:

The CMUcam4 is a fully programmable embedded computer vision sensor. The main

processor is the Parallax P8X32A (Propeller Chip) connected to an OmniVision 9665

CMOS camera sensor module. For more information please see the wiki.

Features

 Fully open source and re-programmable using the Propeller Tool

 Arduino Shield Compatible

o w/ Supporting Interface Libraries and Demo Applications for the

Arduino and BASIC Stamp

 VGA resolution (640x480) RGB565/YUV655 color sensor

o Image processing rate of 30 frames per second

o Raw image dumps over serial or to flash card

 (640:320:160:80)x(480:240:120:60) image resolution

 RGB565/YUV655 color space

 Onboard Image Processing (QQVGA 160x120)

o Track user defined color blobs in the RGB/YUV color space

o Mean, median, mode and standard deviation data collection – sampled

from a 40x120 resolution

o Segmented (thresholded) image capture for tracking visualization

(over serial or to flash card)

 80x60 image resolution

 Monochrome color space

o Histogram generation (up to 128 Bins) – sampled from a 40x120

resolution

o Arbitrary image clipping (windowing)

http://www.cmucam.org/projects/cmucam4/wiki/Wiki

 µSD/µSDHC flash card slot with FAT16/32 full file system driver support

o w/ Directory and File manipulation

 I/O Interfaces

o Two-port servo controller (pan and tilt w/ 1us resolution at a 50 Hz

refresh rate)

 Pan and/or Tilt servo channels can be configured as GPIOs

o Indicator user controllable LED (red) and power LED (green)

o TTL UART (up to 250,000 baud – 19,200 baud by default)

 Monochrome baseband analog video output (NTSC/PAL) of 160x120

resolution for tracking visualization (segmented (thresholded) image w/

color centroid and bounding box overlay at 30 FPS)

 CMUcam4 GUI for viewing images on the PC

Typical Uses

The CMUcam4 can be used to track colors or collect basic image statistics. The best

performance can be achieved when there are highly contrasting and intense colors.

For instance, it can easily track a red ball on a white background, but it would be hard

to differentiate between different shades of brown in changing light. Tracking colorful

objects can be used to localize landmarks, follow lines, or chase moving beacons.

Using color statistics, it is possible for the CMUcam4 to monitor a scene, detect a

specific color, or do primitive motion detection. If the CMUcam4 detects a drastic color

change, then chances are something in the scene changed. Using “line mode”, the

CMUcam4 can generate low resolution binary images of colorful objects. This can be

used to do more sophisticated image processing that includes line following with

branch detection, or even simple shape recognition. These more advanced

operations require custom algorithms to post process the binary images sent from the

CMUcam4. As is the case with a normal digital camera, this type of processing might

require a computer or at least a fast microcontroller.

Typical Configuration

The most common configuration for the CMUcam4 is to have it communicate to a

master processor via a standard TTL serial port. This “master processor” could be a

computer (through USB or RS232), Arduino, Basic Stamp, PIC, or similar

microcontroller. The CMUcam4 is small enough to add simple vision to embedded

systems that can not afford the size or power of a standard computer based vision

system. Its communication protocol is designed to accommodate even the slowest of

processors. The CMUcam4 supports various baud rates to accommodate slower

processors. For even slower processors, the CMUcam4 can operate in “poll mode”. In

this mode, the host processor can ask the CMUcam4 for just a single packet of data.

This gives slower processors the ability to more easily stay synchronized with the data.

It is also possible to add a delay between individual serial data characters using the

“delay mode” command. Due to communication delays, both poll mode and delay

mode will lower the total number of frames that can be processed in one second.

Quick Start

Getting Started

Please follow the steps below:

1. You will need the following two items to test the CMUcam4

o A 4V to 9V DC external power supply capable of delivering at

least 250 mA

 This can be from an Arduino, FTDI Breakout Board, FTDI

Cable, or Wall Wart

o An NTSC TV (or compatible television monitor) and an RCA Cable

2. Setup to test the CMUcam4

o Connect the NTSC TV to the CMUcam4's RCA Coaxial Jack using

the RCA Cable

o Connect the external power supply to the CMUcam4's DC Barrel

Jack (or other power ports)

The green power LED should illuminate once you connect the external power supply

to the CMUcam4. After about 2 seconds, the red auxiliary LED should illuminate to

indicate the CMUcam4 is ready for action. If the green power LED does not illuminate

please double check the external power supply connection. If the red auxiliary

LED does not illuminate please go to the CMUcam4 forums for help.

Testing Procedure

Please follow the steps below:

1. Press and hold the reset button on the CMUcam4

2. Press and hold the user button on the CMUcam4

3. Release the reset button (do not release the user button)

4. Wait until the red auxiliary LED turns on (2 seconds)

5. Wait until the red auxiliary LED starts blinking at 10 Hz and then release

the user button

o The TV should turn on (you should see a splash screen displayed on

the TV)

6. The CMUcam4 will now adjust to the lighting conditions for the next 5

seconds

http://www.cmucam.org/projects/cmucam4/boards

o Do not place the object you want to track in front of the CMUcam4 for

the next 5 seconds

7. Wait until the red auxiliary LED stops blinking at 10 Hz

o The CMUcam4 is now done adjusting to lighting conditions

o The pan and tilt servo pins should output 1500 μs pulses at 50 Hz

8. Place the object you want to track in front of the CMUcam4 and press the user

button

o If the red auxiliary LED begins blinking at 10 Hz examine

the OV9665 camera module connection

 The OV9665 camera module may be damaged and most likely

needs to be replaced

9. You should now see the tracked object (or similar) displayed on the TV –

otherwise ask for help

o The pan and tilt servos, if connected, will also try to drive the camera

towards the tracked object

10. Please try this procedure with different objects in different environments to see

what works the best

Download the testing guide in PDF form here.

Communication Tools

You will need one of the following (or similar) USB to Serial Converters to

communicate with the CMUcam4:

 An FTDI 5V Breakout Board

o You will also need an external power supply capable of powering the

CMUcam4

o Please connect the FTDI 5V Breakout Board to the 6-pin connector

on the CMUcam4

 An FTDI 3.3V Breakout Board

o You will also need an external power supply capable of powering the

CMUcam4

o Please connect the FTDI 3.3V Breakout Board to the 6-pin connector

on the CMUcam4

 A Prop Clip

o You will also need an external power supply capable of powering the

CMUcam4

o Please connect the Prop Clip to the 4-pin connector on the CMUcam4

 A Prop Plug

o You will also need an external power supply capable of powering the

CMUcam4

http://www.cmucam.org/projects/cmucam4/boards
http://www.cmucam.org/attachments/download/639/CMUcam4-Testing-Guide-102.pdf
http://www.sparkfun.com/products/9716
http://www.sparkfun.com/products/9873
http://www.parallax.com/Portals/0/Downloads/docs/prod/prop/32200-32201-PropClipPlug-v1.3.pdf
http://www.parallax.com/tabid/7*68/ProductID/398/Default.aspx

o Please connect the Prop Plug to the 4-pin connector on the

CMUcam4

 An FTDI 5V Cable w/ 5V I/O

o Recommended for 5V tolerant systems

o Please connect the FTDI 5V Cable w/ 5V I/O to the 6-pin connector

on the CMUcam4

 An FTDI 5V Cable w/ 3.3V I/O

o Recommended for 3.3V tolerant systems

o Please connect the FTDI 5V Cable w/ 3.3V I/O to the 6-pin connector

on the CMUcam4

Recommended Serial Terminal Programs

The Parallax Serial Terminal is a handy tool for communication with serial-based

microcontrollers such as the Parallax Propeller chip. It is the recommended serial

terminal to use to communicate with the camera board. The Parallax Serial Terminal

(PST) is a stand-alone application less than 1 MB in size and does not require

installation to use. PST is available for download from Parallax Inc. here. Follow the

below steps to setup PST:

1. Run PST

2. Go to Echo On and make sure it is checked

3. Go to Com Port and select the COM port the CMUcam4 is connected to from

the drop-down list

4. Go to Baud Rate and select 19200 from the drop-down list

o Click Enable if necessary

For non-Windows users Brad’s SPIN Tool (BST) is recommended. BST can be

downloaded here. BST is a graphical user interface (GUI) integrated development

environment (IDE) stand-alone application less than 10 MB is size designed for the

http://www.cmucam.org/attachments/525/PST_large.png�
http://www.sparkfun.com/products/9718
http://www.sparkfun.com/products/9717
http://www.parallax.com/Portals/0/Downloads/sw/propeller/Parallax-Serial-Terminal.exe
http://www.parallax.com/tabid/828/Default.aspx

Parallax Propeller Chip and does not require installation to use. BST includes a

built-in easy-to-use serial terminal. Follow the below steps to setup BST’s built-in

easy-to-use serial terminal:

1. Run BST

2. Go to View and select Serial Terminal from the drop-down list

o The bst Terminal should pop-up – please click on it

3. Go to Baud and select 19200 from the drop-down list

4. Go to Format and select 8 Bits and Parity None from the drop-down list

5. Go to Port and select the COM port the CMUcam4 is connected to from the

drop-down list

o Look for ports named /dev/tty/USB###

6. Go to Communicate and select Connect, Terminal Echo, and Reset

Propeller from the drop-down menu

o Go to Communicate and select Display ASCII for ASCII output

or Display Hex for hex output

NOTE: You cannot use the FTDI 5V Cables with BST!

This is because BST pulls the green RTS wire low on the FTDI 5V Cable when you

click Connect. This halts the CMUcam4 indefinitely. You can remove the green

RTS wire from the connector to fix this problem.

How to use the CMUcam4 properly

The CMUcam4 is an embedded computer vision system designed to track colors and

to be used as a co-processor for the Arduino or equivalent microcontroller. If you've

ever wanted to add computer vision to your Arduino or equivalent microcontroller

powered robot, then the CMUcam4 is for you! However, if you want a general purpose

computer vision system that can do more than just track colors and preform basic

image statistics, then the CMUcam4 is not for you.

Computer vision systems like the Kinect can do much more than the CMUcam4. But,

you can't connect the Kinect to your Arduino. If you just want to track colors and

control motors with your Arduino then using the CMUcam4 with your Arduino will be

far easier. Otherwise, you would have to program an application for your PC to use

the Kinect and to talk to your Arduino, and an application for your Arduino to

communicate to the PC and control motors. Using the CMUcam4 will save you half

the work!

The CMUcam4 is also a low powered embedded computer vision system. It draws

about 100 mA on average while running. This means you can connect it to your

Arduino and USB port (assuming the USB port supplies up to 500 mA) without issues.

The Kinect on the other hand draws over 1 A while operating. Not to mention that

you'll need a PC to use it which may also draw over 1 A while operating. If power will

not be an issue for you, then this paragraph is a moot point. But, for many robots

power consumption is important.

Like everything else in life, the devil is in the details. The CMUcam4 was designed to

interface with the Arduino from the ground up - other computer vision systems are not.

So, if you want to use your Arduino with other more powerful computer vision systems

then you will need to figure out the details.

How to Track Colors

The CMUcam4 features a frame dump command called "DF" (Dump Frame). The

"DF" command saves a picture of what the CMUcam4 sees to the microSD card. By

using the "DF" command you can take pictures of all the colored objects you want to

track with the CMUcam4. In general, you'll want to use the "DF" command to take

160x120 pictures because 160x120 is the same resolution the CMUcam4 uses to

track colors. Once you have all the pictures of the colored objects you want to track

you then need to use the "UM" (Unmount Disk) command to unmount the microSD

card from the CMUcam4 before removing the microSD card from the CMUcam4.

Otherwise, when you plug your microSD card into your computer your operating

system will complain about the microSD card not being removed properly.

Anyway, once you connect your microSD card to your PC you can then look at the

CMUcam4 frame dumps. The CMUcam4 saves pictures in the BMP file format so that

any program will be able to open them. However, first you'll need to rotate the image

by 90 degrees before being able to view it properly. After rotating the image you can

then examine the pixel color values for the object you want to track using the eye

dropper tool like in Microsoft Paint.

You'll want to take a few samples of the red, green, and blue color channels of the

object you want to track. Try to figure out the area of color that the object spans.

Eventually, you should end up with a minimum and maximum value for the red, green,

and blue color channels. You'll then want to feed these minimum and maximum

values back to the CMUcam4 to track the colored object. You'll probably want to

increase the range of the min and max values you find to compensate for changes in

lighting. Otherwise, if you have the CMUcam4 hooked up to a TV, you'll be able notice

the object moving in and out of being tracked as the lighting changes on the object.

If you have a program that can display the histogram of the image like Photoshop,

then you'll want to crop the image around the color of the object you want to track. By

using the image histogram feature of the program you'll be able to see the distribution

of the pixels in the red, blue, and green color channels. This makes figuring out what

color of the object you want to track much easier. You'll also want to increase the

range of colors you are tracking to compensate for changes in lighting like in the

above paragraph and similarly feed the minimum and maximum red, green, and blue

values of the color you want to track back to the CMUcam4 so that it tracks the object.

This calibration process requires a bit of iteration, but, the CMUcam4 is just like any

other sensor, you can't expect it to magically work without effort. However, the

CMUcam4's video output feature lets you see what the CMUcam4 sees in real time so

that you can more quickly finish the calibration process and verify that everything is

working for you application.

Color-tracking Explanation

What is tracking a color and how does the CMUcam4 do it?

Color tracking is the ability to take an image, isolate a particular color and extract

information about the location of a region of that image that contains just that color. As

an example, assume that you are given a photograph that contains a red ball sitting

on a dirt road. If someone were to ask you to draw a box around anything that was the

color red in the image, you would quite easily draw a rectangle around the ball. This is

the basic idea behind color tracking. You did not need to know that the object was a

ball. You only needed to have a concept of the color red in order to isolate the object

in the picture. Below, we will briefly address how the CMUcam4 actually uses the

information in a camera image to perform color tracking.

In order to specify color, you need to define a minimum and maximum allowable value

for three color channels. Every unique color is represented by a red, green, and blue

value that indicates how much of each channel is mixed into the unique color. The

tricky part about specifying a color is that you need to define a range of allowable

values for all three color channels. Since light is not perfectly uniform and the color of

an object is not perfectly uniform, you need to accommodate for these variations.

However, you don’t want to relax these bounds too much, or many unwanted colors

will be accepted. Since, in the case of the CMUcam4, each color channel is converted

into a number between 0 and 255, you can bound each channel with two numbers, an

upper and lower limit. If you have two limits for each of the three channels, this means

that six values can be used to constrain the entire color space that you wish to track. If

you imagine the colors being represented by a cube where each side is a different

color channel (red, green and blue) then the six values used to select your color would

draw a three dimensional box inside that cube that defines your desired set of colors.

Once you have a bound for the color you wish to track, the CMUcam4 takes these

bounds and processes the image. There are many ways to track colors in an image

that can be quite complex. The CMUcam4 uses a simple one pass algorithm that

processes each new image frame from the camera independently. It starts at the top

left of the image and sequentially examines every pixel row by row. If the pixel it is

inspecting falls inside the range of colors that the user specified, it marks that pixel as

being tracked. It also examines the position of the current tracked pixel to see if it is

the top most, bottom most, left most, or right most position of all the tracked pixel

found thus far in the image. If it finds that the pixel is outside of the current bounding

box of the tracked region, it grows the bounding box to contain this new pixel.

Because the location of even a single tracked pixel can change the bounding box, the

bounding box can sometimes fluctuate quite a bit from frame to frame. Noise filtering

(see next paragraph) can be used to reduce some of that fluctuation. The only other

major piece of information that is stored is a sum of the horizontal and vertical

coordinates of the tracked pixels. At the end the image the CMUcam4 takes the

horizontal sum and the vertical sum of the tracked pixels and divides each by the total

number of tracked pixels and gets a value that shows where the middle of the tracked

object is located. Because each tracked pixel only contributes a small part to the final

horizontal and vertical sums the middle (often called the centroid) of the tracked pixels

is typically a much more stable measurement than the bounding box. Once all of the

pixels in the image have been checked, the total number of tracked pixels can also be

used in conjunction with the area of the bounding box to calculate the confidence of

and the number of pixels in the tracked object.

Noise filtering allows us to make the color tracking ranges larger so we can

accommodate larger variations in the image pixel values without causing other

random variations in the image to be tracked. The idea behind noise filtering is that we

only want to consider a pixel to be of the tracked color if it is part of a group of pixels

that are within the color tracking bounds. In the CMUcam4 we implement this in a way

that only requires a single pass over the image. While processing the pixels in an

image the CMUcam4 maintains a counter which keeps of track of how many

sequential pixels in the current row, before the current pixel were within the tracked

color bounds. If that value is above the noise filter value then the current pixel is

marked as a tracked pixel.

What is a histogram and what is it good for?

A histogram is a type of chart that displays the frequency and distribution of data. In

the case of the CMUcam4, the histogram shows the frequency and distribution of

color values found in an image. Each bar represents a range of color values for a

specific channel. The CMUcam4 can divide the possible color values from 0 to 255

into 1, 2, 4, 8, 16, 32, and 64 different bins. Each bin contains the number of pixels

found in the image that fall within some color bounds. So a large value in one

particular bin, means that many of those colors were found in the image. Each

histogram only represents one select channel of color.

Histograms are a way of abstracting the contents of an image. They have many uses

such as primitive object recognition, thresholding or color balancing. They are

particularly useful for distinguishing between different textures. Try pointing the

CMUcam4 with auto-gain turned off at two different textured surfaces and notice the

difference in their color distributions. This effect can be used to distinguish floor

surfaces or detect obstacles.

Tips and Tricks

Demo Mode

Demo mode allows you to demo the CMUcam4 without a master processor. In demo

mode, the CMUcam4 executes the "TW" (Track Window) command and then drives

two standard hobby servos towards the object being tracked while at the same time

displaying the tracked object on a standard TV. Once the CMUcam4 enters demo

mode it will not exit demo mode until it is reset. Follow the steps below to enter demo

mode:

1. Press and hold the reset button on the CMUcam4

2. Press and hold the user button on the CMUcam4

3. Release the reset button (do not release the user button)

4. Wait until the red auxiliary LED turns on (2 seconds)

5. Wait until the red auxiliary LED starts blinking at 10 Hz and then release

the user button

o The TV should turn on (you should see a splash screen displayed on

the TV) if the CMUcam4 is connected to a TV

6. The CMUcam4 will now adjust to the lighting conditions for the next 5

seconds

o Do not place the object you want to track in front of the CMUcam4 for

the next 5 seconds

7. Wait until the red auxiliary LED stops blinking at 10 Hz

o The CMUcam4 is now done adjusting to lighting conditions

o The pan and tilt servo pins should output 1500 μs pulses at 50 Hz

8. Place the object you want to track in front of the CMUcam4 and press the user

button

o If the red auxiliary LED begins blinking at 10 Hz examine

the OV9665 camera module connection

 The OV9665 camera module may be damaged and most likely

needs to be replaced

9. You should now see the tracked object (or similar) displayed on the TV if the

CMUcam4 is connected to a TV

o The pan and tilt servos, if connected, will also try to drive the camera

towards the tracked object

10. Please try this procedure with different objects in different environments to see

what works the best

11. The CMUcam4 is now running in demo mode

Press the reset button to exit demo mode.

For non-reversed operation of the pan servo, pulse lengths lower than 1500 µs must

move the camera module’s X position to the right (from the camera module’s

point-of-view) and pulse lengths higher than 1500 µs must move the camera module’s

X position to the left (from the camera module’s point-of-view).

For non-reversed operation of the tilt servo, pulse lengths lower than 1500 µs must

move the camera module’s Y position down (from the camera module’s point-of-view)

and pulse lengths higher than 1500 µs must move the camera module’s Y position up

(from the camera module’s point-of-view).

Halt Mode

Halt mode allows you to halt the CMUcam4 while still connected to an Arduino. In halt

mode, the CMUcam4 draws very little power and does not prevent an Arduino from

being programmed by blocking the Arduino's serial port. Halt mode is only necessary

if the CMUcam4 interferes with the Arduino programming process. If it does not then

halt mode is unnecessary - this is usually the case. Once the CMUcam4 enters halt

mode it will not exit halt mode until it is reset. Follow the steps below to enter halt

mode:

1. Press and hold the reset button on the CMUcam4

2. Press and hold the user button on the CMUcam4

3. Release the reset button (do not release the user button)

4. Wait until the red auxiliary LED turns on (2 seconds)

5. Release the user button

6. The CMUcam4 is now halted indefinitely

Press the reset button to exit halt mode.

Notes on Better Tracking

Better Tracking with Auto-gain and White Balance

Auto-gain is an internal control that adjusts the brightness level of the image to best

suit the environment. It attempts to normalize the lights and darks in the image so that

they approximate the overall brightness of a hand adjusted image. This process

iterates over many frames as the camera automatically adjusts its brightness levels. If

for example a light is turned on and the environment gets brighter, the camera will try

and adjust the brightness to dim the overall image.

White balance on the other hand attempts to correct the camera’s color gains. The

ambient light in your image may not be pure white. In this case, the camera will see

colors differently. The camera begins with an initial guess of how much gain to give

each color channel. If active, white balance will adjust these gains on a

frame-by-frame basis so that the average color in the image approaches a gray color.

Empirically, this “gray world” method has been found to work relatively well. The

problem with gray world white balance is that if a solid color fills the camera’s view,

the white balance will slowly set the gains so that the color appears to be gray and not

its true color. Then when the solid color is removed, the image will have undesirable

color gains until it re-establishes its gray average.

When tracking colors, like in demo mode, you may wish to allow auto-gain and white

balance to run for a short period and then shut them off. While on for a period of about

5 seconds, the camera can set its brightness gain and color gains to what it sees as fit.

Then turning them off will stop the camera from unnecessarily changing its settings

due to an object being held close to the lens, shadows, or etc. If auto-gain and white

balance were not disabled and the camera changed its settings for the RGB or YCbCr

values, then the new measured values may fall outside the originally selected color

tracking thresholds.

The camera module requires auto-gain to be enabled to utilize white balance.

YUV (YCbCr) Color Space

YCbCr is a different color space definition from the more commonly known RGB

space. In YCbCr the illumination data is stored in a separate channel. Because of this

property, in YCbCr mode the camera may be more resistant to changes in illumination.

Because it is a different color space, images in YCbCr do not look like standard RGB

images when directly mapped by a frame dump program. The RGB channels map to

CrYCb. So in YCbCr mode, the value returned as the red parameter is actually Cr, the

green parameter is Y, and the blue parameter is Cb. So if you wish to track a red

object, you need to look at a dumped frame to see what that object’s colors map to in

YCbCr. It should then be possible to find the Cb and Cr bounds while giving a very

relaxed Y bound showing that illumination is not very important. When using YCbCr,

make sure you take into account that in terms of all CMUcam4 I/O, Red maps to Cr,

Green to Y, and Blue to Cb.

Notice that the RGB channels map to give you CrYCb, not YCbCr.

About the Camera Module

From power up, the camera can take up to 5 seconds to automatically adjust to the

light. Drastic changes in the environment, such as lights being turned on and off, can

induce a similar readjustment time. When using the camera outside, due to the sun’s

powerful IR emissions, even on relatively cloudy days, it will probably be necessary to

use either an IR filter or a neutral density camera filter to decrease the ambient light

level.

The functions provided by the camera board are meant to give the user a toolbox of

color vision functions. Actual applications may greatly vary and are left up to the

imagination of the user. The ability to change the viewable window, grab color and

light statistics, and track colors can be interwoven by the host processor to create

higher level functionality.

How to use the interface library

Downloading and installing the interface library

You need to install the Arduino Interface Library first before being able to use it with
your Arduino Environment. To do so, go to the files web page by clicking here and
download the CMUcam4-Arduino-Interface-Library-100 file and unzip it. You should
see a single folder inside called CMUcam4.

Next, find and open your Arduino sketchbook folder. If there is already a folder
inside of your sketchbook folder called libraries, then place the CMUcam4 folder
inside of the libraries folder. Otherwise, create a folder called libraries inside of your
sketchbook folder and place the CMUcam4 folder inside of the libraries folder.

Finally, if you currently have the Arduino IDE open, restart it. Then, if you go to
the Sketch > Import Library menu you should see CMUcam4 listed there. Click
on the CMUcam4 menu item to include the interface library at the top of your
sketch.

http://cmucam.org/projects/cmucam4/files

We recommend that you check out the example code included with the interface
library before you begin programming. You can check out our example code by
going to File > Examples > CMUcam4 and clicking on the examples listed there.

Please refer to the CMUcam4 Manual for more information about CMUcam4
commands, data packets, and error codes. This documentation assumes that you
have read through the command list users manual. Additionally, please refer to
theElectrical and Component Characteristics documentation for more
information about the CMUcam4's power consumption and the CMUcam4's
specifications.

Connecting the CMUcam4 to your Arduino

To use the CMUcam4 with your Arduino you need to connect the CMUcam4 to one of
the Arduino's serial ports. You can connect the CMUcam4 to the Arduino from either
the 4-Pin Prop Clip/Plug Port , the 6-Pin Arduino Adapter Port , or the 2-Pin
Arduino Shield Port located on the CMUcam4. Please see the Board Layout and
Ports documentation for more information about these serial ports.

For serial communication to work you need to connect one and only one RXI pin
from the CMUcam4 to a TXO pin on your Arduino, one and only one TXO pin from
the CMUcam4 to a RXI pin on your Arduino (the RXI and TXO pins must be from
the same serial port on your Arduino), and the CMUcam4 and your Arduino must
share a common ground. Additionally, you need to power the CMUcam4 with a
power supply capable of delivering at least 250 mA at between 4V to 9V DC .

Because the CMUcam4 connects to the Arduino's serial port it may interfere with
programming your Arduino. Some Arduino boards put current limiting resistors
between the CMUcam4's serial port and the Ardunio's serial port - like the Arduino
Pro. This configuration allows the Arduino Pro to be reprogrammed when a serial
programmer is connected and communicate with the CMUcam4 when a serial
programmer is not connected. However, the Arduino Pro cannot communicate with
the CMUcam4 while a serial programmer is connected. Other types of Arduino
boards, like the Arduino Uno, put current limiting resistors between the serial
programmer and the Arduino, but not between the CMUcam4 and the Arduino. This
configuration allows the Arduino to be able to always communicate with the
CMUcam4. However, if a serial programmer is connected to the Arduino while the
CMUcam4 is connected to the Arduino then the serial programmer will not be able to
communicate with the Arduino.

If you cannot reprogram your Arduino when the CMUcam4 is connected to your
Arduino you can either disconnect the CMUcam4 from your Arduino or you can put
the CMUcam4 into halt mode.

http://cmucam.org/documents/11
http://cmucam.org/documents/17
http://cmucam.org/documents/16
http://cmucam.org/documents/16

Halt mode allows you to halt the CMUcam4 while still connected to an Arduino. In
halt mode, the CMUcam4 draws very little power and does not prevent an Arduino
from being programmed by blocking the Arduino's serial port. Halt mode is only
necessary if the CMUcam4 interferes with the Arduino programming process. If it
does not then halt mode is unnecessary - this is usually the case. Once the
CMUcam4 enters halt mode it will not exit halt mode until it is reset. Follow the steps
below to enter halt mode:

1. Press and hold the reset button on the CMUcam4
2. Press and hold the user button on the CMUcam4
3. Release the reset button (do not release the user button)
4. Wait until the red auxiliary LED turns on (2 seconds)
5. Release the user button
6. The CMUcam4 is now halted indefinitely

Press the reset button to exit halt mode.

Initializing the interface library and the CMUcam4

To use the CMUcam4 interface library you must first include the CMUcam4.h file at
the top of your code. Next, you need to instantiate a CMUcam4 interface library
object in your code. You can pass either nothing when instantiating
the CMUcam4interface library object or you can pass a serial port number for the
serial port the CMUcam4 interface library object should use. The serial port
number can be either CMUCOM4_SERIAL, CMUCOM4_SERIAL1,
CMUCOM4_SERIAL2, or CMUCOM4_SERIAL3 for serial ports Serial, Serial1, Serial2,
and Serial3 on the Arduino and Arduino Mega (only the Arduino Mega supports serial
ports Serial1, Serial2, and Serial3). If you do not pass a serial port number, or an
invalid serial port number, then the interface library will use the serial port Serial by
default. DO NOT use the serial port that you pass the CMUcam4 interface library
after calling CMUcam4::begin() and before calling CMUcam4::end(). Sending
or receiving data on the serial port while the CMUcam4 interface library is using the
serial port will cause the interface library and the CMUcam4 to become confused.

Calling the CMUcam4::begin() function initializes the interface library and the
CMUcam4. It changes the communication baud rate from 19,200 BPS to 115,200
BPS for CMUcam4s with firmware version 1.01 or less and changes the
communication baud rate from 19,200 BPS to 250,000 BPS for CMUcam4s with
firmware version 1.02 or greater. Additionally, the function changes the number of
stop bits to one. If the CMUcam4::begin() function is not called all CMUcam4
wrapper functions in the interface library will return the
CMUCAM4_NOT_ACTIVATED error number (CMUcam4 wrapper functions are the
functions in the CMUcam4 interface library that have the same name as the
CMUcam4 commands).

http://www.cmucam.org/docs/cmucam4/arduino_api/_c_m_ucam4_8h.html
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a12c685521781d36e0c27810df62b840c
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a882067407682fbb5472b9ebaed581708
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a12c685521781d36e0c27810df62b840c
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a12c685521781d36e0c27810df62b840c

Call the CMUcam4::end() function to finalize the CMUcam4 interface library and
release the serial port the interface library was using for use. Before using the serial
port the interface library was using you should physically disconnect the CMUcam4
from the serial port the interface library was using.

Once the CMUcam4 interface library has been initialized by calling
the CMUcam4::begin() function you can call other functions inside the CMUcam4
interface library. For example, if you want to put the CMUcam4 to sleep to save
power you can call either
the CMUcam4::sleepLightly() or CMUcam4::sleepDeeply() functions. These
functions are wrappers for the CMUcam4 "SD" (sleep deeply) and "SL" (sleep lightly)
commands. The interface library has a wrapper function for every CMUcam4
command and helper functions for working with CMUcam4 data structures.

Color tracking with the interface library

The CMUcam4::trackColor(), CMUcam4::trackWindow(), CMUcam4::getHi
stogram(), and CMUcam4::getMean() functions are used to track colors with
the CMUcam4 and get image statistics with the CMUcam4. When you call any one of
the above functions the CMUcam4 enters stream mode and begins sending type F,
H, S, and/or T data packets depending on what function you called and what mode
the CMUcam4 was in. To get the data packets the CMUcam4 is sending you may call
the CMUcam4::getTypeFDataPacket(), CMUcam4::getTypeHDataPacket(),
CMUcam4::getTypeSDataPacket(),
and CMUcam4::getTypeTDataPacket() to get type F, H, S, and T packets the
CMUcam4 is sending respectively. If you call any other function than a
getType*DataPacket() function then the CMUcam4 will exit stream mode and you
may no longer call any getType*DataPacket() function until you tell the CMUcam4
to enter stream mode again by
callingCMUcam4::trackColor(), CMUcam4::trackWindow(), CMUcam4::get
Histogram(), or CMUcam4::getMean(). All other functions in the CMUcam4
interface library do not cause the CMUcam4 to enter stream mode and may be
called in any order.

When the CMUcam4 enters stream mode it begins to constantly send data packets
to the Arduino. You need to call the getType*DataPacket() functions to get the data
packets and keep the Arduino's serial buffer from overflowing while the CMUcam4 is
in stream mode. Always process data packets sent by the CMUcam4 after receiving
all the data packets sent by the CMUcam4 during the current image frame. For
example, if line mode is enabled and the CMUcam4 is sending type T data packets
followed by type F data packets then call CMUcam4::getTypeTDataPacket() and
then call CMUcam4::getTypeFDataPacket() and then process the type T data
packet and the type F data packet. DO NOT process the type T data packet before
getting the type F data packet or the Arduino's serial buffer may overflow.

http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a882067407682fbb5472b9ebaed581708
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a12c685521781d36e0c27810df62b840c
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#ab7cb6459c1c6fdba453fd73ac3600ca7
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#aed213061b3eaa15a7c8c3afb94c62b37
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#ada8e148303f0ba312fd0838873f04044
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a046eefc61cf9ffe09362d11c7151fc56
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a65a41cbea9944b5b9a340789ab1510a7
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a65a41cbea9944b5b9a340789ab1510a7
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a2451e1d9522b9f6377ce8bb30c075598
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a9b9cc27bc343f143f6cbf5c779ecbca7
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#aeba97ec605e87f3a1aafd137c9d938df
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a7fd12f3e62bb17c29a5bf56a22b0e481
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a2d06ef7c99fda0efc582770a3ba95971
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#ada8e148303f0ba312fd0838873f04044
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a046eefc61cf9ffe09362d11c7151fc56
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a65a41cbea9944b5b9a340789ab1510a7
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a65a41cbea9944b5b9a340789ab1510a7
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a2451e1d9522b9f6377ce8bb30c075598
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a2d06ef7c99fda0efc582770a3ba95971
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a9b9cc27bc343f143f6cbf5c779ecbca7

If you want the CMUcam4 to exit stream mode but do not want it to execute another
command call the CMUcam4::idleCamera() function.

All non-file system related functions have a timeout of 1 second. This means that if
communication is lost with the CMUcam4 all non-file system related functions will
return in a second with the CMUCAM4_SERIAL_TIMEOUT error. However, all file
system related functions have a timeout of 1 hour because file system related
commands can take an arbitrary amount of time. Be suspicious of electrical
communication and/or power problems if your Arduino program appears to hang on
a CMUcam4 interface library file system call. But, understand that file system
related functions
like CMUcam4::formatDisk() and CMUcam4::diskSpace() can take several
minutes or more to run.

Arduino and Arduino Mega memory usage

The interface library uses a non-trivial amount of RAM on the Arduino and Arduino
Mega. For example, Type F Data Packets require six hundred bytes of RAM. Because
of this, you need to keep track of your memory usage. To learn how to do this please
click here for a tutorial by Jee Labs on memory usage.

Porting the interface library

The interface library is composed of a CMUcam4 object and a CMUcom4 object.
The CMUcam4 object is the interface library and the CMUcom4 object is a
platform specific functionality wrapper. Only the CMUcom4.cpp file
and CMUcom4.h file need to be edited to port the interface library.
The CMUcam4 object calls functions inside of the CMUcom4 object for serial and
timer functionality.

Porting the CMUcom4.cpp and CMUcom4.h file is straight forward. Just supply
each Arduino serial and timer function wrapper with the appropriate function call in
your microcontroller or operating system. Additionally, you will need to edit the
maximum baud rate and minimum stop bits constants in the CMUcom4.h file.
Finally, you will also need to edit the command and response serial buffer sizes in
the CMUcom4.h file - the command and response serial buffers do not need to be
and should not be larger than 256 bytes.

The interface library assumes that chars are at least 8 bits, ints and size_ts are at
least 16 bits, and longs are at least 32 bits. These assumptions are valid for all
platforms implementing standard C data types . Additionally, the interface library
assumes your microcontroller or operating system is little little-endian. If your
operating system or microntroller does not implement standard C data types and/or

http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#af06210c1629e6e11c0fe67c4676b1549
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a4a7e70957b88094b95b672ab6910978d
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a734486c3dd6993b85586d9a257a41a09
http://jeelabs.org/2011/05/22/atmega-memory-use/
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucom4.html
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucom4.html
http://www.cmucam.org/docs/cmucam4/arduino_api/_c_m_ucom4_8cpp.html
http://www.cmucam.org/docs/cmucam4/arduino_api/_c_m_ucom4_8h.html
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucom4.html
http://www.cmucam.org/docs/cmucam4/arduino_api/_c_m_ucom4_8cpp.html
http://www.cmucam.org/docs/cmucam4/arduino_api/_c_m_ucom4_8h.html
http://www.cmucam.org/docs/cmucam4/arduino_api/_c_m_ucom4_8h.html
http://www.cmucam.org/docs/cmucam4/arduino_api/_c_m_ucom4_8h.html
http://en.wikipedia.org/wiki/C_data_types

is not little endian then you will need to also edit the CMUcam4.cpp file
andCMUcam4.h file to support your particular microcontroller or operating system.

Troubleshooting

In Demo Mode the power light, auxiliary light, and TV turn on for a second and

then everything stops

When both the CMUcam4 and pan and/or tilt servos are active, the power required is

greater. Try using a battery or voltage source rated at a higher current.

The power LED does not glow or glows dimly

The board either has a fault, or your power supply is not generating enough power.

The power supply should be capable of delivering at least 250 mA at between 4 volts

to 9 volts DC. Check the power supply and look over all of the wire connections. Try

unplugging all of the wires except for the power wires and turn the CMUcam4 on

again.

I get garbage output from the camera

Try turning the camera off and unplugging it for 10 seconds. Then plug it back in and

try again.

I get wavy lines in my image or a distorted black and white image when I call

"DF" (Dump Frame)

This is most likely due to power. Make sure that you have a high enough voltage and

that you are getting a clean signal. Running the camera off of fresh batteries (not an

AC adapter) is a good way to test if this is the problem. The camera module could also

possibly be damaged.

My processor can not keep up with the serial data stream

Try running the camera in poll mode using the "PM" (Poll Mode) command and setting

a delay mode value using the "DM" (Delay Mode) command.

I don’t seem to get any serial data

Make sure that the serial cable is attached to the CMUcam4 correctly. If in doubt, try

reversing it.

I see the CMUcam4 startup message, but, then nothing happens

http://www.cmucam.org/docs/cmucam4/arduino_api/_c_m_ucam4_8cpp.html
http://www.cmucam.org/docs/cmucam4/arduino_api/_c_m_ucam4_8h.html

Check to make sure the transmit line on your serial cable is connected correctly.

My microSD card doesn't work

MicroSD cards differ based on brand. It is possible that your brand doesn't work with

the CMUcam4. It is also possible that your card has a corrupt file system. In this case,

try reformatting your card and check to make sure the contacts on your board and

card look clean.

Class List
Here are the classes, structs, unions and interfaces with brief descriptions:

CMUcam4
The CMUcam4 class implements a
generic C++ interface library for the
CMUcam4

CMUcam4_directory_entry_t
File or directory entry data structure

CMUcam4_disk_information_t
Disk information data structure

CMUcam4_disk_space_t
Disk space data structure

CMUcam4_entry_attributes_t
File or directory attributes data
structure

CMUcam4_histogram_data_16_t
CMUcam4 16-bin histogram
structure

CMUcam4_histogram_data_1_t
CMUcam4 1-bin histogram structure

CMUcam4_histogram_data_2_t
CMUcam4 2-bin histogram structure

CMUcam4_histogram_data_32_t
CMUcam4 32-bin histogram
structure

CMUcam4_histogram_data_4_t
CMUcam4 4-bin histogram structure

CMUcam4_histogram_data_64_t
CMUcam4 64-bin histogram
structure

CMUcam4_histogram_data_8_t
CMUcam4 8-bin histogram structure

CMUcam4_image_data_t
CMUcam4 binary bitmap structure

CMUcam4_statistics_data_t
CMUcam4 statistics data structure

CMUcam4_tracking_data_t
CMUcam4 tracking data structure

http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__directory__entry__t.html
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__disk__information__t.html
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__disk__space__t.html
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__entry__attributes__t.html
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__histogram__data__16__t.html
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__histogram__data__1__t.html
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__histogram__data__2__t.html
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__histogram__data__32__t.html
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__histogram__data__4__t.html
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__histogram__data__64__t.html
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__histogram__data__8__t.html
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__image__data__t.html
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__statistics__data__t.html
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__tracking__data__t.html

CMUcam4_tracking_parameters_t
CMUcam4 tracking parameters
structure

CMUcam4_tracking_window_t
CMUcam4 tracking window structure

CMUcom4
This is a hardware abstraction layer
for the CMUcam4 class

Here is a list of all documented class members with links to the class documentation
for each member:

- a -

 andPixels() : CMUcam4
 archive : CMUcam4_entry_attributes_t
 attributes : CMUcam4_directory_entry_t
 autoGainControl() : CMUcam4
 automaticPan() : CMUcam4
 automaticTilt() : CMUcam4
 autoPanParameters() : CMUcam4
 autoTiltParameters() : CMUcam4
 autoWhiteBalance() : CMUcam4
 available() : CMUcom4

- b -

 begin() : CMUcam4 , CMUcom4
 bins : CMUcam4_histogram_data_2_t , CMUcam4_histogram_data_

32_t , CMUcam4_histogram_data_64_t , CMUcam4_histogram_dat
a_4_t , CMUcam4_histogram_data_1_t , CMUcam4_histogram_dat
a_8_t ,CMUcam4_histogram_data_16_t

 blackAndWhiteMode() : CMUcam4
 blueMax : CMUcam4_tracking_parameters_t
 blueMin : CMUcam4_tracking_parameters_t
 BMean : CMUcam4_statistics_data_t
 BMedian : CMUcam4_statistics_data_t
 BMode : CMUcam4_statistics_data_t
 bottomRightX : CMUcam4_tracking_window_t
 bottomRightY : CMUcam4_tracking_window_t
 BStDev : CMUcam4_statistics_data_t
 bytesPerSector : CMUcam4_disk_information_t

- c -

 cameraBrightness() : CMUcam4

http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__tracking__parameters__t.html
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__tracking__window__t.html
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucom4.html
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#aa6614b1e73d84deadc21620f50841fdf
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__entry__attributes__t.html#ae41464db44fc523ef8b7be43b7398562
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__directory__entry__t.html#af27e1128af9ac3fefc198224fe16adaf
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a97ac372cd919fe709f680770a05f5357
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a2f53940277b46643d8ec3e3cef6e5760
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a5152bfb7c09acb083dbfe8e6fabf3527
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#aa3e3a8adacf1cca1e6156841e14bfac1
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a07f8892546c360e4cb6bac15845e54ea
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#ab8821515bc5023f7f85f8a739d50b0a1
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucom4.html#a4549a76725f2e4c013e4d57018366109
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a12c685521781d36e0c27810df62b840c
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucom4.html#a384e10dd459783bcba27090520119f3c
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__histogram__data__2__t.html#aefc652a4f857f34a141c9630107f567e
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__histogram__data__32__t.html#ad03489cd4e9cc8a879d6e0bdb7e563ca
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__histogram__data__32__t.html#ad03489cd4e9cc8a879d6e0bdb7e563ca
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__histogram__data__64__t.html#a64eff8ced52fdf6848aa7436df985b7d
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__histogram__data__4__t.html#ac3ecab503e2323053e67c1fb107f3c3d
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__histogram__data__4__t.html#ac3ecab503e2323053e67c1fb107f3c3d
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__histogram__data__1__t.html#aa0ccb3a399e3092f10cc77f8e08eaaa5
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__histogram__data__8__t.html#a572cfb0ca269d560d5a3125fadb22a55
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__histogram__data__8__t.html#a572cfb0ca269d560d5a3125fadb22a55
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__histogram__data__16__t.html#ac0d7277e4824bba7dd14a8f9d05aa609
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a804ca0320940b8625ec28c629e43e13d
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__tracking__parameters__t.html#a2fc1a859c2aa90d7a93ab315edf811b2
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__tracking__parameters__t.html#a3e14f46e8346997c97ae9b4c1fc5bd5c
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__statistics__data__t.html#ac60ff401c171ecf69c9b42b2d59a1b4e
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__statistics__data__t.html#ac0ae3c4e5d094760a9c2dadefdf2ae01
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__statistics__data__t.html#a420cadff44892fa2f47e4d4014801d15
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__tracking__window__t.html#a5331e001f910dd2dbbd5f9e19a9b8301
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__tracking__window__t.html#a5cba4f64f6f9cad84d44858320ddb992
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__statistics__data__t.html#a9ce36a4dbf3305eac4379fcee261cb3c
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__disk__information__t.html#aab7aa651a8ac1d5f683faccb2d0e02a4
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a8128c854a1c2ee1c4dd12d2bbb93d284

 cameraContrast() : CMUcam4
 cameraRegisterRead() : CMUcam4
 cameraRegisterWrite() : CMUcam4
 changeAttributes() : CMUcam4
 changeDirectory() : CMUcam4
 CMUcam4() : CMUcam4
 CMUcom4() : CMUcom4
 colorTracking() : CMUcam4
 confidence : CMUcam4_tracking_data_t
 countOfClusters : CMUcam4_disk_information_t
 countOfDataSectors : CMUcam4_disk_information_t

- d -

 delayMilliseconds() : CMUcom4
 directory : CMUcam4_entry_attributes_t
 diskInformation() : CMUcam4
 diskSignature : CMUcam4_disk_information_t
 diskSpace() : CMUcam4
 dumpBitmap() : CMUcam4
 dumpFrame() : CMUcam4

- e -

 end() : CMUcam4 , CMUcom4

- f -

 filePrint() : CMUcam4
 fileSystemType : CMUcam4_disk_information_t
 flush() : CMUcom4
 formatDisk() : CMUcam4
 freeSectorCount : CMUcam4_disk_space_t

- g -

 getButtonDuration() : CMUcam4
 getButtonPressed() : CMUcam4
 getButtonReleased() : CMUcam4
 getButtonState() : CMUcam4
 getHistogram() : CMUcam4
 getInputs() : CMUcam4
 getMean() : CMUcam4
 getPixel() : CMUcam4
 getServoPosition() : CMUcam4

http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#ab987083f38031ae430196e40d869ea5f
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#aecfb1c49cb70c7879f2b45edacda58f7
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a8ceb868e74dfa12ea2b215a5313b30f4
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#adb35b0181c5d399ad49e72539dbaaa52
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a31df9f53d3fee7cf602ecedf85907929
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#aeaacd87afa8ecfe63d870c34b9fe22b0
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucom4.html#ac7a860e683e50f7f323593847f1ec40c
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a618289e7375e5b087cf522fd4f26da87
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__tracking__data__t.html#a1a5d876387ec0f17dc6df2e0dbe707b2
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__disk__information__t.html#aeb32895d5a00858909f0cca63d961a3c
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__disk__information__t.html#a67079d1a5f4cf1a07ff6b3b2e273ba7a
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucom4.html#a74d8aff40774c8a364845f0265776a24
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__entry__attributes__t.html#a5d392da4ac3b837edcd0ea423f63ce60
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#aa584ec9d3e44892daec15144c7cc5d93
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__disk__information__t.html#ae93d21f3ceba9733c7c242f7deec3c04
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a734486c3dd6993b85586d9a257a41a09
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#af4898be6f143fec5c2ab3bff5fac62cb
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a835ecb6e37118aba66d41e9924f9bca2
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a882067407682fbb5472b9ebaed581708
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucom4.html#aaf81d3fdaf258088d7692fa70cece087
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a74a1972372b283ccf35bd410ac7eb78e
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__disk__information__t.html#ab27b99c1a291228e7bd506df5a442dd2
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucom4.html#adac116554b543b7c4228c018a85882f5
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a4a7e70957b88094b95b672ab6910978d
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__disk__space__t.html#a36cb1b4ee4ef491521a4223049e51746
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a93667d361bdfb95de85f9b315a3504bf
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#ab59a68ed68665bec3310f4606e2f26e0
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a3bedfd4e1b89c773f7735f4d7552cbec
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a7f54b0a96f841e33f797e27d568a2176
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a65a41cbea9944b5b9a340789ab1510a7
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a27306711dbb9ad3fa0e8c9746d2e05c0
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a2451e1d9522b9f6377ce8bb30c075598
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#af49ba7050860588e9150a209b83d7e79
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a668a7fba80ccf630f028b85e179a6ae6

 getTrackingParameters() : CMUcam4
 getTrackingWindow() : CMUcam4
 getTypeFDataPacket() : CMUcam4
 getTypeHDataPacket() : CMUcam4
 getTypeSDataPacket() : CMUcam4
 getTypeTDataPacket() : CMUcam4
 getVersion() : CMUcam4
 GMean : CMUcam4_statistics_data_t
 GMedian : CMUcam4_statistics_data_t
 GMode : CMUcam4_statistics_data_t
 greenMax : CMUcam4_tracking_parameters_t
 greenMin : CMUcam4_tracking_parameters_t
 GStDev : CMUcam4_statistics_data_t

- h -

 hidden : CMUcam4_entry_attributes_t
 histogramTracking() : CMUcam4
 horizontalMirror() : CMUcam4

- i -

 idleCamera() : CMUcam4
 invertedFilter() : CMUcam4
 isArchive() : CMUcam4
 isDirectory() : CMUcam4
 isHidden() : CMUcam4
 isReadOnly() : CMUcam4
 isSystem() : CMUcam4
 isVolumeID() : CMUcam4

- l -

 LEDOff() : CMUcam4
 LEDOn() : CMUcam4
 lineMode() : CMUcam4
 listDirectory() : CMUcam4

- m -

 makeDirectory() : CMUcam4
 milliseconds() : CMUcom4
 monitorFreeze() : CMUcam4
 monitorOff() : CMUcam4
 monitorOn() : CMUcam4

http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a7e6d28c510dec2bf73979cc1af708107
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#ad8db5467a02e93862de4ada65788a8a3
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a9b9cc27bc343f143f6cbf5c779ecbca7
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a99d803816e606b6b47a878c9f0ca0b40
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a7fd12f3e62bb17c29a5bf56a22b0e481
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a2d06ef7c99fda0efc582770a3ba95971
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a5b15fe423a1ef9d1fd4ca2f7b1c7b240
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__statistics__data__t.html#a0aa78ee1e5cc92f365882e2f4a2e1b96
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__statistics__data__t.html#a4ab0f591dd718fb1f98b853544ac0169
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__statistics__data__t.html#a2218f51a1c9c5dcfa83659b0c53ee7af
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__tracking__parameters__t.html#afe17fc22b14204e706cae666288a6a79
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__tracking__parameters__t.html#a439135ab51e2839b893cf604b124f7ad
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__statistics__data__t.html#a93ae06a60b7ec8fcedb022d587f36335
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__entry__attributes__t.html#a25e774a5915dc2088001afac8ea80cef
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a3049eb4def6bb6e39c17dfb6329bea73
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a8b4650540f5d941cd2a2f1a96d2ae497
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#af06210c1629e6e11c0fe67c4676b1549
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#afb6289a53f2924bef18c0750548488de
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#afc35783ef21b3f582b29a8296af979ef
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a4338d94cf27a2efc80c38bd4c44c682d
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#aeaf7bff337d863f230798544e7ac0962
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a0b444d72bcbb8c134d47d5bf95124b08
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a012782f57112c487bb9343c5bbbb430d
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a016f5a0088ef2d95c1007305256163a3
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a4c2c3ab2bf3f9faa9f331815408d14f4
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a79c73a90f1f4f9dbc412c5ce0379c23b
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#ac91bb1a9aa642f4f31e5f88c64b27080
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a03f676c3325c60200a7186e8d7f63472
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a386dcd1020673ed89954e2e9c2aeaddc
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucom4.html#adbab63d461fea699722de60068ad28a9
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#ad3047cfb866ad712d1897921cfcb924b
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#aae83278ad00e8718cb9e3c4d296c8835
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a0ec06c1949026a98a083602023d31fc7

 monitorSignal() : CMUcam4
 moveEntry() : CMUcam4
 mx : CMUcam4_tracking_data_t
 my : CMUcam4_tracking_data_t

- n -

 name : CMUcam4_directory_entry_t
 negativeMode() : CMUcam4
 noiseFilter() : CMUcam4
 notPixels() : CMUcam4
 nullTerminator : CMUcam4_entry_attributes_t

- o -

 orPixels() : CMUcam4

- p -

 panInput() : CMUcam4
 panOutput() : CMUcam4
 peek() : CMUcom4
 pixels : CMUcam4_tracking_data_t , CMUcam4_image_data_t
 pollMode() : CMUcam4
 printLine() : CMUcam4

- r -

 read() : CMUcom4
 readOnly : CMUcam4_entry_attributes_t
 redMax : CMUcam4_tracking_parameters_t
 redMin : CMUcam4_tracking_parameters_t
 removeEntry() : CMUcam4
 resetSystem() : CMUcam4
 RMean : CMUcam4_statistics_data_t
 RMedian : CMUcam4_statistics_data_t
 RMode : CMUcam4_statistics_data_t
 RStDev : CMUcam4_statistics_data_t

- s -

 sectorsPerCluster : CMUcam4_disk_information_t
 sendBitmap() : CMUcam4
 sendFrame() : CMUcam4
 setOutputs() : CMUcam4

http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a2cb3ff10096a975ba7b6386b6f88ab24
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#ac25f703db40f982587f84342218f30e4
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__tracking__data__t.html#abf52ae79935a94d7d84708dec73c0013
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__tracking__data__t.html#a2f48f9eea25d2d619a31ae255278a2b5
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__directory__entry__t.html#ae9b7dbda0eaf727d810ecfbdcf86d115
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a193b70284c1572da8042064e8c40744f
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#ab34ea16892a1bebedb5eab630cb2c012
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a940d7a75b06de2d0cd70bab532ca1e7f
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__entry__attributes__t.html#ae5cab50995496d742bb370c8adb78339
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#ae5141f9075ebb6b5ffdf5ffa5c472f3b
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a35514bb22c2d07c7c65d9334d413a10d
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#ab7aa1e97b0722205fa9f7927dac242fe
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucom4.html#a9040fa1d479d71edf3a826f4691c35c4
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__tracking__data__t.html#a5d41cf5ef2316b748ed36ffecb4d54bd
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__image__data__t.html#a321da2b96cbc70a4df70d0c763125998
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a911d8e1cdb28affaa7f714bff0254aa0
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#abecce7d46e1059631cd9f09f8ae98494
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucom4.html#aaab5dab5b969a87f538242e524431637
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__entry__attributes__t.html#af5e0dfe8c772717a9eaaf0f138443929
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__tracking__parameters__t.html#ac805c9d7e6a27025b4ee3ca792e977a8
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__tracking__parameters__t.html#a0003d7dd6a21420538fc3e11f532be6b
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a80943c4b2cc4a922b64aada91426759f
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#ad992eed44206d491dc9b90cf5bdc713d
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__statistics__data__t.html#aba737efb4d7a53534a122fab8732cbea
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__statistics__data__t.html#a06bb1f4d72655de3d8fd4c4c4f4f71cb
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__statistics__data__t.html#a67fceeb6a2576ebc58b20992291a8e44
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__statistics__data__t.html#a624cbed76da0b1a11089583c0da262bc
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__disk__information__t.html#a6b6ff88b4c4a8f5d4b1e3bb93971f353
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#abe67e0538112c7966215fc3a933de5cd
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#aea1c97da8ddf076fd71c15e01c503d8c
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#ae07ba88bfa892acb188fe27c357b3770

 setPixel() : CMUcam4
 setServoPosition() : CMUcam4
 setTrackingParameters() : CMUcam4
 setTrackingWindow() : CMUcam4
 size : CMUcam4_directory_entry_t
 sleepDeeply() : CMUcam4
 sleepLightly() : CMUcam4
 switchingMode() : CMUcam4
 system : CMUcam4_entry_attributes_t

- t -

 testMode() : CMUcam4
 tiltInput() : CMUcam4
 tiltOutput() : CMUcam4
 topLeftX : CMUcam4_tracking_window_t
 topLeftY : CMUcam4_tracking_window_t
 trackColor() : CMUcam4
 trackWindow() : CMUcam4

- u -

 unmountDisk() : CMUcam4
 usedSectorCount : CMUcam4_disk_space_t

- v -

 verticalFlip() : CMUcam4
 volumeID : CMUcam4_entry_attributes_t
 volumeIdentification : CMUcam4_disk_information_t
 volumeLabel : CMUcam4_disk_information_t

- w -

 write() : CMUcom4

- x -

 x1 : CMUcam4_tracking_data_t
 x2 : CMUcam4_tracking_data_t
 xorPixels() : CMUcam4

- y -

 y1 : CMUcam4_tracking_data_t
 y2 : CMUcam4_tracking_data_t

http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a0edc1f5c429228c0bbca9fd56ba85e4c
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a73c8709a1757dda43e55f88aa6dc0154
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a8e511a464e4878056f73be313f920318
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#aee090f80534a9254dd57c67dcfabbb65
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__directory__entry__t.html#a1e1268d164c38e4f8a4f4eb9058b0601
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#aed213061b3eaa15a7c8c3afb94c62b37
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#ab7cb6459c1c6fdba453fd73ac3600ca7
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a670e81c337c0b9dd880c1441ef3afa37
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__entry__attributes__t.html#a51811cc92ed07e8d8fae94d2e9bf6f37
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a409846cb987275859c90693f89802829
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#abc4e9a1d4d19924aaa49069d59576527
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#ad348f391b426805c03a41534a694f4e8
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__tracking__window__t.html#ad5eefa9b4cc3fcc9925e4e6384bdf470
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__tracking__window__t.html#a1fe6315fe0759f5b98589526195718a2
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#ada8e148303f0ba312fd0838873f04044
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a046eefc61cf9ffe09362d11c7151fc56
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#aa5e0ec31b4beb4b89d53a45a46e83093
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__disk__space__t.html#aeb3232c7a2fcf8bf0476e4c449af8db6
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#a5b4fd6111e283d5924bb0ec0ee1d280f
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__entry__attributes__t.html#aadfa161a31e509c18accc5c2cff16dce
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__disk__information__t.html#a37e0a0e2ae9073a6c8b601b2c749927c
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__disk__information__t.html#a7c134467c3e86818b2069859677a9de0
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucom4.html#a7c66fc8d559f4956d4ccea196299bca7
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__tracking__data__t.html#a97fcb0e1731b36905e90757f211b1340
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__tracking__data__t.html#ad660c90589efbb535c7d55dc032c1b09
http://www.cmucam.org/docs/cmucam4/arduino_api/class_c_m_ucam4.html#aec89477457dc7b53f43d78502b949a53
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__tracking__data__t.html#a886daa12d11655f342168e87c7c0b1cb
http://www.cmucam.org/docs/cmucam4/arduino_api/struct_c_m_ucam4__tracking__data__t.html#ab01055e87d61c94f71e59f1116867f60

	How to use the CMUcam4 properly
	Color-tracking Explanation
	Troubleshooting

